On the Summability of Fourier Series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Summability of Fourier Series

A set of regular summations logarithmic methods is introduced. This set includes Riesz and Nörlund logarithmic methods as limit cases. The application to logarithmic summability of Fourier series of continuous and integrable functions are given. The kernels of these logarithmic methods for trigonometric system are estimated.

متن کامل

On the Summability of Fourier Series. Fifth Note.

and evaluating the generalized sum of (1) as the lim rm(x; f). The matrix ?2 will be subjected to the restrictions (i-iv) below. These restrictions are of such general nature, however, that they are satisfied by a great majority of the definitions of summability known in the literature. Our first condition on 21 is significant only in the case where 91 is of infinite reference. It is automatica...

متن کامل

On the Restricted Cesaro Summability of Double Fourier Series

and po.biu, v), («, v), has been considered by a number of writers. Gergen and Littauer [4, Theorems IV and V] have treated the problem of the boundedness, and convergence in the Pringsheim sense, of ...

متن کامل

Further result on the strong summability of Fourier series

This article deals with some special cases which are extension of the strong summability of Fourier series with constant factor. We obtain a new equivalent form of inequalities A 2π 0 φ(e iθ) r dθ ≤ 2π 0 1 0 (1 − ρ) φ (z) 2 dρ r/2 dθ ≤ B 2π 0 φ(e iθ) r dθ, (1) 2π 0 1 0 (1 − ρ) q−1 φ (z) q dρ r/q dθ ≤ C 2π 0 φ(e iθ) r dθ, (2) D 2π 0 φ(e iθ) r dθ ≤ 2π 0 1 0 (1 − ρ) p−1 φ (z) p dρ r/p dθ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1937

ISSN: 0002-9947

DOI: 10.2307/1989877